>NINO3.4 SST (Not Anomaly) – Part 3

>The highlights of the first two installments of this series of posts about NINO3.4 SST (not NINO3.4 anomaly) data are:
1. There is a negative trend from 1854 to 2007 in the annual minimum NINO3.4 SST. All other SST and LST data sets I’ve checked so far have positive trends.
2. In the graphs of the temperature differences between NINO3.4 SST and hemispheric and global SST and in the graphs of the temperature differences between NINO3.4 and global LST and global combine surface temperature, there are underlying oscillations with a time span of approximately 80 years.
3. In recent years, there are also shorter time-span oscillations that mimic the solar cycle. These will now be discussed.


In part 2 of this series, I noted the oscillation in the short-term graphs of NINO3.4 SST data. These oscillations appeared to have a frequency that mimicked that of the 11-year cycle of Total Solar Irradiance (TSI). Refer to Figure 1 & 2.

Figure 2

I’ve added monthly Sunspot data (I haven’t been able to find long-term monthly TSI data) and expanded the time frame for the comparative graphs, Figures 3 and 4. In both figures, the Sunspot data has been scaled with a multiplier of 0.015 and shifted by 25 to bring it close to the same range. I have made no other changes to the data in Figure 3. Referring to the last three cycles, there does appear to be a correlation, though the lag between Sunspot Number and NINO3.4 SST changes. Prior to then, the correlation evaporates through most solar cycles, periodically lining up again. In Figure 4, I’ve shifted the Sunspot data by 48 months to bring it into line with the NINO3.4 data, but the result is no better. I’ve also added volcanic aerosols, simulated by the Mean Optical Thickness data of the Sato Index, to see if there was any cause and effect there. No help.
Figure 3

Figure 4


Does this mean that NINO3.4 SSTs are not driven by solar irradiance? No. But, on the other hand, the possible correlation between the two data sets for the last three solar cycles does not prove that it is. It simply infers that there might be a link and that it’s something that needs to be investigated further. It could be that NINO3.4 SSTs are also influenced by other variables (very likely) and that the influence of these other variables changes with time (possible). Or it could also be that NINO3.4 SST is responding to changes in “apparent” solar irradiance of the surrounding Pacific Ocean, with “apparent” solar irradiance also taking into consideration the variations in solar irradiance reaching the ocean surface caused by volcanic eruptions, cloud cover, etc. Or it could be that there are different oceanic time lags that are reflected in the NINO3.4 SSTs. Or there might have been a change in SST sampling methods that impacted the earlier results, causing the correlation to be dampened. (NINO3.4 data before the opening of the Panama Canal in the 1910s have a much lower sampling number than after its opening, and there have been many recent papers about the effects of different sampling methods–insulated versus non-insulated buckets versus engine intake–on SST data.) Or it could be a combination of the above and other unnamed factors.


Sea Surface Temperature Data is Smith and Reynolds Extended Reconstructed SST (ERSST.v2) available through the NOAA National Operational Model Archive & Distribution System (NOMADS).

SATO Index Data is available at:

The Monthly Sunspot Data is available here:

About Bob Tisdale

Research interest: the long-term aftereffects of El Niño and La Nina events on global sea surface temperature and ocean heat content. Author of the ebook Who Turned on the Heat? and regular contributor at WattsUpWithThat.
This entry was posted in Uncategorized. Bookmark the permalink.

2 Responses to >NINO3.4 SST (Not Anomaly) – Part 3

  1. Erl says:

    >Bob,Perhaps you could look at a paper I have at http://www.climateaudit.org/phpBB3/viewforum.php?f=6under ‘Solar Register’, page 4, entitled ‘warming and cooling’. I think sea surface data from the tropics are the key to understanding temperature change in mid to high latitudes.

  2. Bob Tisdale says:

    >Erl: Thanks for the paper. It’s new to me and there’s lots to absorb. Thanks again.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s